# Preparation, Crystal Structure, Vibrational Spectra, and Thermal Behavior of *N*, *N*'-Dimethylpiperazinium(2+) Hydrogen Selenite

Ivan Němec,<sup>1</sup> Vít Chudoba, David Havlíček, Ivana Císařová, and Zdeněk Mička

Department of Inorganic Chemistry, Faculty of Science, Charles University of Prague, Albertov 2030, 128 40 Prague 2, Czech Republic

Received March 6, 2001; in revised form June 21, 2001; accepted July 16, 2001

The X-ray structural analysis of N,N'-dimethylpiperazinium(2+) hydrogen selenite has been carried out. The substance crystallizes in the orthorhombic space group Pbcn, a = 14.682(2), b = 6.4910(10), c = 13.065(2) Å; V = 1245.1(3) $Å^3$ , Z = 8, R = 0.0234 for 2135 observed reflections. The cations of trans-N, N'-dimethylpiperazinium(2+) in the chair conformation are arranged roughly plane-parallel above one another. Hydrogen selenite anions linked by H-bonds form infinite chains, which are interconnected with N, N'-dimethylpiperazinium(2+) groups by N–H … O hydrogen bonds. The FTIR and FT Raman spectra of natural and deuterated compounds were recorded and interpreted. The FTIR spectra were studied down to a temperature of 90 K. The thermoanalytical properties were studied by the TG, DTG, and DTA methods in the 293–573 K temperature range. DSC measurements were carried out in the 95-403 K temperature range. No thermal effect indicating phase transition was observed in this temperature region. ©2001 Academic Press

Key Words: N, N'-dimethylpiperazinium(2+) hydrogen selenite; crystal structure; vibrational spectra; thermal behavior.

#### **INTRODUCTION**

Many members of the hydrogen selenite family  $MH_3(SeO_3)_2$ ,  $MHSeO_3$  and hydrogen selenates  $M_4H_2(SeO_4)_3$ ,  $M_4MH_3(SeO_4)_4$ , and  $MHSeO_4$  types, where M is an alkali metal or ammonium, exhibit interesting physical and structural properties, and much research effort has been devoted to these compounds. However, a minimal amount of attention has been paid in the literature to similar compounds in which the alkali metal ion was substituted by an organic cation. For example, only a few crystal structures of organic nitrogen-containing hydrogen selenites have been published so far (1–5).

This work is part of our project of searching for new hydrogen-bonded materials exhibiting ferroelectric proper-

ties or proton conductivity within the group of acidic oxysalts of selenium with organic nitrogen-containing bases.

The title novel compound N,N'-dimethylpiperazinium (2 +) hydrogen selenite (Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub>), was prepared and intensively studied. Congruently soluble Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub> is the only salt formed in the N,N'-dimethylpiperazine-selenious acid-water system. From this point of view, comparison with the piperazine-H<sub>2</sub>SeO<sub>3</sub>-H<sub>2</sub>O system is interesting, where two different salts with different anions were isolated (6), piperazinium(2 +) selenite monohydrate and piperazinium(2 +) diselenite.

In addition to determining crystal structure, we measured (and interpreted) the vibrational spectra of polycrystalline  $Me_2pipz(HSeO_3)_2$  and of its deuterated analogue. FTIR measurements down to low temperatures (90 K) and DSC measurements in a broad temperature interval were carried out to elucidate the existence of possible phase transitions.

#### **EXPERIMENTAL**

Crystals of Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub> were prepared by slow spontaneous evaporation of a solution of N,N'-dimethylpiperazine (98%, Aldrich) and selenious oxide (99.8%, Aldrich) (in a molar ratio of 1:2) at laboratory temperature. The colorless crystals obtained were collected under vacuum on an S2 frit, washed with a small amount of cold water and ethanol, and dried in the air. The selenium content was determined iodometrically (7) (theoretical content 42.4%, found 42.0%). Elemental analysis results for C, H, and N (19.5% C, 4.8% H, 7.4% N) agree well with theoretical content (19.4% C, 4.9% H, 7.5% N).

The N,O-deuterated compound  $(CH_2)_4(ND^+CH_3)_2$ ·  $(DSeO_3)_2$  was prepared similarly as a natural compound using D<sub>2</sub>O (99%) as a solvent, and the product was crystallized in a desiccator over KOH.

The X-ray data collection for the Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub> single crystal was carried out on an Enraf–Nonius CAD4-MACH III four-circle diffractometer (MoK $\alpha$  radiation,



 $<sup>^1\</sup>mathrm{To}$  whom correspondence should be addressed. E-mail: <code>agnemec@natur.cuni.cz</code>.

graphite monochromator). The temperature of the crystal was controlled by an Oxford Cryosystems liquid nitrogen Cryostream Cooler. Intensities of diffractions were corrected for the Lorentz-polarization effects and for absorption. The positions of the nonhydrogen atoms were determined using direct methods (SIR-92 (8)), and the hydrogen atoms

| TABLE 1                                                             |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|
| Basic Crystallographic Data, Data Collection, and Refinement        |  |  |  |  |  |  |
| Parameters of Me <sub>2</sub> pipz(HSeO <sub>3</sub> ) <sub>2</sub> |  |  |  |  |  |  |

| Empirical formula                | $C_6H_{18}N_2O_6Se_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X-ray powder diffraction method                |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Formula weight                   | 372.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
| Temperature                      | 150.0(1) K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 298 K                                          |
| Wavelength                       | 0.71069 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.54178 Å                                      |
| Crystal system, space            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| group                            | orthorhombic. Phcn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| Unit cell dimensions             | a = 14.682(2) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a = 14.691(4) Å                                |
| Chitt Cell Chillensions          | h = 6.4910(10)  Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h = 6.492(2) Å                                 |
|                                  | b = 0.4910(10)  A<br>a = 12.065(2)  Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b = 0.492(2) R<br>a = 12.054(4) Å              |
| Valuma                           | $\mathcal{L} = 15.005(2) \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C = 13.034(4) A<br>$V = 1244.0(6) \text{ Å}^3$ |
| 7 Calculated density             | V = 1243.1(3)  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V = 1244.9(0) A                                |
| Z, Calculated density            | 8, 1.985 g.cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| Absorption coefficient           | 5.954 mm -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| F(000)                           | /36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| Crystal size                     | $0.5 \times 0.35 \times 0.25 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| Theta range for data             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| collection                       | 2.77 to 24.98°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| Range of $h$ , $k$ and $l$       | $-17 \rightarrow 17, 0 \rightarrow 7, 0 \rightarrow 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Reflections                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| collected/unique                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| $(R_{int})$                      | 2135/1095 (0.0537)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| Refinement method                | Full-matrix least-squares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
|                                  | on $F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| Data/restraints/                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| parameters                       | 1095/0/110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| Absorption correction            | empirical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
|                                  | 0.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| T <sub>min</sub>                 | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| $I_{\text{max}}$                 | 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| Goodness-oi-int on F             | 1.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| Final K indices                  | <b>D1</b> 0.0004 <b>D2</b> 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| $\lfloor I > 2\sigma(I) \rfloor$ | R1 = 0.0234, WR2 = 0.0605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| R indices (all data)             | R1 = 0.0309, WR2 = 0.0630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| Extinction coefficient           | 0.049(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| Largest diff. max.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| and min.                         | $0.371, -1.017 \text{ e.Å}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| No. and $\Theta$ range of        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| reflections for                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| unit cell                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| determination                    | 25, 13–14°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| Scan technique                   | $\Theta - 2\Theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| No. of standard                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| reflections                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| Standard reflections             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| monitored in                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| interval                         | 60 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
| Intensity variation              | 2 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| Function minimized               | $\sum (w(E^2 - E^2))^2 / \sum (w(E^2)^2 - 1/2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| Weighting scheme                 | $\sum_{w_{i}} \frac{(w(r_{0} - r_{c}))}{(w(r_{0})^{-1})} \sum_{w_{i}} \frac{(w(r_{0})^{-1})}{(w(r_{0})^{-1})} \sum_{w_{i}} (w(r_$ |                                                |
| weighting scheme                 | $w = [\sigma^{-}(r_{0}) + (0.0296P)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|                                  | $+ 0.00P \rfloor^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
|                                  | $P = \lfloor F_o^2 + 2F_c^2 \rfloor / 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |

| TA  | DI   | F | 2 |
|-----|------|---|---|
| I A | \ DI |   | - |

| Fractional Atomic Coordinates (for Non-H Atoms×10 <sup>4</sup> , for                              |
|---------------------------------------------------------------------------------------------------|
| H Atoms×10 <sup>3</sup> ) and Equivalent (×10 <sup>4</sup> ) or Isotropic(×10 <sup>3</sup> ) Dis- |
| placement Factors with Standard Deviations in Brackets for                                        |
| $Me_{2}pipz(HSeO_{3})_{2} U_{eq} = 1/3\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}a_{i}a_{j}$         |

|     | X       | У        | Ζ       | $U_{\rm eq}~({\rm \AA}^2)$ |
|-----|---------|----------|---------|----------------------------|
| Se1 | 3755(1) | 4026(1)  | 2328(1) | 16(1)                      |
| 01  | 2874(1) | 4916(3)  | 1517(1) | 30(1)                      |
| O2  | 3390(2) | 1686(3)  | 2618(2) | 32(1)                      |
| O3  | 4531(1) | 3695(2)  | 1415(1) | 21(1)                      |
| C1  | 4932(2) | 1486(4)  | -807(2) | 18(1)                      |
| C2  | 4170(2) | -1002(3) | 307(2)  | 17(1)                      |
| C3  | 3280(2) | 1741(4)  | -535(2) | 21(1)                      |
| N1  | 4165(2) | 1174(3)  | -74(2)  | 15(1)                      |
| H1  | 246(3)  | 551(6)   | 184(3)  | 52(11)                     |
| H10 | 422(2)  | 190(4)   | 48(2)   | 16(7)                      |
| H11 | 491(2)  | 285(5)   | -100(2) | 28(7)                      |
| H12 | 481(2)  | 53(4)    | -141(2) | 9(6)                       |
| H21 | 362(2)  | -119(4)  | 71(3)   | 34(10)                     |
| H22 | 404(2)  | -182(3)  | -30(2)  | 7(5)                       |
| H31 | 326(2)  | 312(5)   | -68(2)  | 30(8)                      |
| H32 | 279(2)  | 143(3)   | -6(2)   | 25(7)                      |
| H33 | 317(2)  | 94(4)    | -113(3) | 26(8)                      |

were localized on differential Fourier maps. The thermal parameters for the nonhydrogen atoms were refined anisotropically and, for the hydrogen atoms, isotropically. Refine-

| TABLE 3                                                      |
|--------------------------------------------------------------|
| Bond Lengths (Å) and Selected Angles (°) for Me2pipz(HSeO3)2 |

| Se1-O1                | 1.769(2)           | C1-N1-C2                | 109.7(2)              |
|-----------------------|--------------------|-------------------------|-----------------------|
| Se1-O2                | 1.654(2)           | C1-N1-C3                | 111.6(2)              |
| Se1-O3                | 1.664(2)           | C2-N1-C3                | 112.0(2)              |
| C1-N1                 | 1.491(3)           | N1-C1-H11               | 107(2)                |
| C1-C2 <sup>i</sup>    | 1.505(4)           | N1-C1-H12               | 106(2)                |
| C1-H11                | 0.92(3)            | H11-C1-H12              | 111(2)                |
| C1-H12                | 1.02(3)            | C2 <sup>i</sup> -C1-H11 | 110(2)                |
| C2-N1                 | 1.497(3)           | C2 <sup>i</sup> -C1-H12 | 112(1)                |
| C2-H21                | 0.97(3)            | N1-C2-H21               | 107(2)                |
| C2-H22                | 0.98(2)            | N1-C2-H22               | 104(1)                |
| C3-N1                 | 1.479(3)           | H21-C2-H22              | 102(2)                |
| C3-H31                | 0.92(3)            | C1 <sup>i</sup> -C2-H21 | 118(2)                |
| C3-H32                | 0.98(3)            | C1 <sup>i</sup> -C2-H22 | 114(1)                |
| C3-H33                | 0.95(3)            | N1-C3-H31               | 111(2)                |
|                       |                    | N1-C3-H32               | 110(2)                |
|                       |                    | N1-C3-H33               | 110(2)                |
| O1-Se1-O2             | 101.6(1)           | H31-C3-H32              | 108(2)                |
| O1-Se1-O3             | 96.5(1)            | H31-C3-H33              | 111(2)                |
| O2-Se1-O3             | 105.5(1)           | H32-C3-H33              | 107(2)                |
| Se1-O1-H1             | 112(3)             | C1-N1-H10               | 113(2)                |
| N1-C1-C2 <sup>i</sup> | 110.7(2)           | C2-N1-H10               | 104(2)                |
| N1-C2-C1 <sup>i</sup> | 110.2(2)           | C3-N1-H10               | 107(2)                |
|                       | Hydr               | rogen bonds:            |                       |
| Donor-H               | Donor Acceptor     | H Acceptor              | Donor-H Acceptor      |
| O1-H1                 | O1O2 <sup>ii</sup> | H1O2 <sup>ii</sup>      | O1-H1O2 <sup>ii</sup> |
| 0.84(4)               | 2.615(3)           | 1.78(4)                 | 176(4)                |
| N1-H10                | N1O3               | H10O3                   | N1-H10O3              |
| 0.87(3)               | 2.598(3)           | 1.75(3)                 | 166(3)                |
|                       |                    |                         |                       |

Note. Equivalent positions: (i) -x + 1, -y, -z; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z.

ment of the coordinates and the thermal parameters was carried out by the least squares method using the SHELXL-97 program (9). The basic crystallographic data and the details of the measurement and refinement are summarized in Table 1. A list of the observed and calculated structural factors and the anisotropic displacement factors are available from the authors upon request.

The lattice parameters were refined at laboratory temperature using the X-ray powder diffraction method. The measurement was carried out on a Freiberg (Germany) URD 6 instrument (Cu $K\alpha$  radiation; Ni filter without a monochromator; range of 10–100° 2 $\theta$ ; step 0.02°; 10 s per step). The results were processed by the ZDS set of programs (10).

The infrared spectra of nujol and fluorolube mulls were recorded on a Mattson Genesis FTIR spectrometer (2-cm<sup>-1</sup> resolution; Beer–Norton medium apodization) in the 400–4000 cm<sup>-1</sup> region. Low-temperature measurements were carried out by the nujol mull method in a low-temperature cell with KBr windows in the 298–90 K interval. The temperature was controlled by a Fe-Const. thermocouple. The analog signal was processed on a PC using the AX5232 temperature measurement board.

FAR IR spectra of nujol mull (PE windows) were recorded on a Nicolet Magna 760 FTIR spectrometer (Solid Substrate beamsplitter; DTGS on PE detector;  $4 \text{-cm}^{-1}$  resolution, Happ–Genzel appodization) in the 50–600 cm<sup>-1</sup> region.

The Raman spectra of polycrystalline samples were recorded on a Bruker Equinox 55/S FTIR spectrometer with



**FIG. 1.** Atom numbering of Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub>. Dashed lines indicate hydrogen bonds.



**FIG. 2.** Packing scheme of  $Me_2pipz(HSeO_3)_2$  (projection to xz plane). Dashed lines indicate hydrogen bonds.

a FRA 106/S Raman module  $(2 \text{-cm}^{-1} \text{ resolution}, \text{Black-man-Harris 4-Term apodization}; 1064 nm NdYAG laser excitation; 250 mW power at the sample) in the 50-4000 cm<sup>-1</sup> region.$ 

The DSC measurements were carried out on a Perkin–Elmer DSC 7 power-compensated apparatus in the 95–403 K temperature region (helium or nitrogen atmosphere). A heating rate of 10 K/min was selected to measure approximately 10 mg of finely ground sample placed in aluminum capsule.

 TABLE 4

 The Results of the Nuclear Site Group Analysis

 for Me2pipz(HSeO3)2

| $D_{2h}^{14}$  |               | $A_g$                                 | $A_{\mathrm{u}}$ | $B_{1g}$                   | $B_{1u}$ | $B_{2g}$                   | $B_{2u}$ | B <sub>3g</sub>            | B <sub>3u</sub> |
|----------------|---------------|---------------------------------------|------------------|----------------------------|----------|----------------------------|----------|----------------------------|-----------------|
|                | Acoustical    |                                       |                  |                            | 1        |                            | 1        |                            | 1               |
| External modes | Translational | 3                                     | 6                | 3                          | 5        | 3                          | 5        | 3                          | 5               |
|                | Librational   | 6                                     | 3                | 6                          | 3        | 6                          | 3        | 6                          | 3               |
| Internal modes |               | 42                                    | 42               | 42                         | 42       | 42                         | 42       | 42                         | 42              |
|                | Total         | 51                                    | 51               | 51                         | 51       | 51                         | 51       | 51                         | 51              |
| Activity       | IR            |                                       |                  |                            | Ζ        |                            | у        |                            | x               |
|                | Raman         | $\alpha_{xx},\alpha_{yy},\alpha_{zz}$ |                  | $\boldsymbol{\alpha}_{xy}$ |          | $\boldsymbol{\alpha}_{xz}$ |          | $\boldsymbol{\alpha}_{yz}$ |                 |

| - ·                                 | 5       | Free ion                   | Site           | Factor group                | x                                             |    | Activity                                |
|-------------------------------------|---------|----------------------------|----------------|-----------------------------|-----------------------------------------------|----|-----------------------------------------|
| Free ion<br>modes <sup>a</sup>      | freedom | symmetry<br>C <sub>s</sub> | symmetry $C_1$ | symmetry<br>D <sub>2h</sub> | wodes                                         | IR | Raman                                   |
| $v_1 v$ Se–O(H)                     | 8       | A' 🔪                       |                | A <sub>g</sub>              | <i>v</i> <sub>1</sub> - <i>v</i> <sub>6</sub> |    | $\alpha_{xx}, \alpha_{yy}, \alpha_{zz}$ |
| $v_2 v_8$ Se-O                      | 8       |                            |                | A <sub>n</sub>              | $v_1 - v_6$                                   |    |                                         |
| $v_3 \delta_8 \text{ O-Se-O(H)}$    | 8       |                            | $\searrow$     | $B_{1}$                     | $v_1 - v_6$                                   |    | $\alpha_{xy}$                           |
| $v_4 \delta O$ –Se–O                | 8       |                            | $>$ $A \ll$    | $B_{1u}$                    | $v_1 - v_6$                                   | Z  |                                         |
|                                     |         | /                          |                | $B_{2g}$                    | v <sub>1</sub> -v <sub>6</sub>                |    | $\alpha_{\mathbf{x}\mathbf{z}}$         |
| v <sub>5</sub> v <sub>as</sub> Se–O | 8       | A"                         |                |                             | $v_1 - v_6$                                   | У  |                                         |
| $v_6 \delta_{as} O-Se-O(H)$         | 8       |                            |                | $B_{3\sigma}$               | $v_1 - v_6$                                   |    | $\alpha_{vz}$                           |
|                                     |         |                            |                | $\searrow B_{3u}$           | v <sub>1</sub> -v <sub>6</sub>                | х  |                                         |
|                                     |         |                            |                |                             |                                               |    |                                         |

 TABLE 5

 Correlation Analysis of HSeO<sub>3</sub> Internal Modes in Me,pipz(HSeO<sub>3</sub>), Crystal

<sup>a</sup>The OH group was assumed to be a single atom.

The thermoanalytical properties were studied using TG, DTG, and DTA recordings. The measurements were carried out on a Derivatograph OD-102 instrument (MOM Budapest). A static atmosphere (air) was used in a temperature range of 293–573 K and at a heat rate of 10 K/min.

### **RESULTS AND DISCUSSION**

# Crystal Structure

The fractional atomic coordinates of  $Me_2pipz(HSeO_3)_2$ are given in Table 2. Bond lengths and angles including those for the hydrogen bonds are listed in Table 3. The atom numbering can be seen in Fig. 1, and the packing scheme is depicted in Fig. 2 (PLATON software (Ref. 11)).

The crystal structure of  $Me_2pipz(HSeO_3)_2$  consists of the N,N'-dimethylpiperazinium(2 +) and  $HSeO_3^-$  ions, which are mutually connected by a system of hydrogen bonds. The cations of trans-N,N'-dimethylpiperazinium(2 +) in the chair conformation are arranged roughly plane-parallel above one another. A similar cation arrangement was also observed for the related salts of piperazine and selenic acid (12) or selenious acid (6). In contrast, the trans-N,N'-



FIG. 3. FTIR (nujol mull) and FT Raman spectra of Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub>.

#### NĚMEC ET AL.

 TABLE 6

 FTIR and FT Raman Spectra of Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub>

|                                                   | I      | R                 | Raman                 |                                                                 | Ι     | R     | Raman            |
|---------------------------------------------------|--------|-------------------|-----------------------|-----------------------------------------------------------------|-------|-------|------------------|
| Assignment                                        | 298 K  | 90 K              | (peak intensity)      | Assignment                                                      | 298 K | 90 K  | (peak intensity) |
| vCH <sub>3</sub> , vCH <sub>2</sub>               | 3020m  | 3018m             | 3020(58) <sup>‡</sup> | νС-С, νС-N, δ-N-С-H                                             |       |       | 1078(16)         |
|                                                   | 2997m  | n.o. <sup>a</sup> | 2999(49)              | γ <b>N</b> –HO                                                  | 1072w | 1072w |                  |
|                                                   | 2979m  | n.o. <sup>a</sup> | 2982(62)              | $vC-C$ , $vC-N$ , $-\delta N-C-H$                               |       |       | 1065(19)         |
|                                                   | 2960m  | n.o. <sup>a</sup> | 2960(51)              | $\delta$ NCH, $\delta$ CCH, $\nu$ CN                            | 1034m | 1036m | 1028(9)          |
|                                                   |        |                   | 2949(46)              | γО–НО                                                           | 1022w | 1023w |                  |
| ?                                                 | 2930mb | n.o. <sup>a</sup> | 2892(22)              | δΝCΗ, δCCΗ, νCN                                                 |       |       | 1016(3)          |
|                                                   |        |                   | 2843(11)              | $\delta$ N–C–H, $\delta$ C–C–H                                  | 974m  | 975m  |                  |
| $vO-H \cdots O$                                   | 2770mb | n.o. <sup>a</sup> | 2747(9)               |                                                                 | 965sh | 967w  |                  |
|                                                   |        |                   | 2705(6)               | ?                                                               | 903w  | 904w  |                  |
| $vN-H \cdots O$                                   | 2390mb | 2365sb            | 2420(5)               | $v_{s}$ Se-O ( $v_{2}$ HSeO <sub>3</sub> )                      | 844s  | 855s  | 838sh            |
|                                                   |        | 2195m             |                       | $v_{s}$ SeO ( $v_{2}$ HSeO <sub>3</sub> ), vCN                  | 821s  | 824s  | 826(100)         |
| ?                                                 | 1800mb | 1790w             |                       | $v_{as}$ Se-O ( $v_5$ HSeO <sub>3</sub> )                       | 805s  | 804s  | 788(25)          |
|                                                   |        | 1745w             |                       |                                                                 |       | 776s  | 781(22)          |
|                                                   | 1700mb | 1705m             |                       |                                                                 | 764s  | 763s  |                  |
|                                                   |        | 1665m             |                       |                                                                 |       | 732m  |                  |
| ?                                                 |        | 1590m             |                       | $v$ Se-OH ( $v_1$ HSeO <sub>3</sub> <sup>-</sup> )              | 634s  | 637s  | 642(41)          |
| $\delta \mathrm{NH}^+$                            | 1544mb | 1550m             |                       |                                                                 |       | 625sh | 638(41)          |
|                                                   |        | 1526m             |                       |                                                                 |       | 612m  |                  |
|                                                   |        | 1500m             |                       |                                                                 | 604m  | 604m  |                  |
|                                                   | 1496m  | 1492m             |                       | $\delta C$ -N-C, $\delta N$ -C-C                                |       |       | 505(16)          |
| $\delta_{as}CH_3, \delta CH_2$                    | 1470m  | n.o. <sup>a</sup> | 1476(20)              | $\delta O$ -Se-O ( $v_4$ HSeO <sub>3</sub> ),                   |       | 457m  | 483(27)          |
|                                                   | 1456m  | n.o. <sup>a</sup> | 1449(12)              | δC-N-C                                                          | 448m  | 446m  |                  |
| $\delta_{s}$ CH <sub>3</sub> , twiCH <sub>2</sub> | 1415m  | 1415m             |                       | $\delta O$ -Se-O ( $v_4$ HSeO <sub>3</sub> <sup>-</sup> )       |       | 425sh | 420(19)          |
| 3 57 2                                            | 1405sh | 1408sh            | 1390(4)               | (+ 3)                                                           | 414s  | 413s  |                  |
|                                                   | 1371m  | n.o. <sup>a</sup> |                       | $\delta C$ -N-C, $\delta N$ -C-C                                |       |       | 388(22)          |
| $\delta$ N–C–H, $\delta$ C–C–H                    |        |                   | 1357(4)               | $\delta_{as}$ HO-Se-O ( $v_6$ HSeO <sub>3</sub> <sup>-</sup> )  | 349m  |       | 346(21)          |
| ,                                                 |        |                   | 1345(3)               |                                                                 | 338sh |       | 334(24)          |
|                                                   |        |                   | 1311(10)              | $\delta_{s}$ HO-Se-O ( $v_{3}$ HSeO <sub>3</sub> <sup>-</sup> ) | 318m  |       | 319(16)          |
| $\delta$ Se–O–H, $\delta$ CNH,                    | 1290sh | 1290sh            | ( )                   | 5 (5 5)                                                         |       |       | 302(10)          |
| δΝCΗ, δCCΗ                                        | 1275m  | 1279m             |                       | ?                                                               | 240sh |       |                  |
| ,                                                 |        | 1225m             | 1231(6)               | τCH <sub>3</sub>                                                | 220m  |       | 206(14)          |
| $\delta C$ -C-H, $\delta N$ -C-H                  | 1209m  |                   | 1204(4)               | 5                                                               | 190w  |       | 181(10)          |
| ,                                                 |        |                   | 1184(6)               |                                                                 | 171w  |       |                  |
| νC-N, δC-C-H                                      | 1171w  | 1171w             |                       | External modes                                                  | 112m  |       | 120(13)          |
| ,                                                 | 1150m  | 1154m             |                       |                                                                 | 98m   |       | 85(33)           |
| $\gamma N\text{-}H\cdots O$                       | 1087w  | 1089w             |                       |                                                                 | 64m   |       | × /              |

*Note.* Abbreviations: s, strong; m, medium; w, weak; b, broad; sh, shoulder;  $\nu$ , stretching;  $\delta$ , deformation or in-plane bending;  $\gamma$ , out-of-plane bending; twi, twisting;  $\tau$ , torsional; s, symmetric; as, asymmetric.

"not observed due to nujol bands.

dimethylpiperazinium(2+) cations have almost perpendicular mutual orientation in the crystal structure of N,N'-dimethylpiperazinium(2+) selenate dihydrate (12).

However, hydrogen selenite anions linked by intermediate O-H  $\cdots$  O hydrogen bonds with a length of 2.62 Å that forming infinite chains along the *b*-axis, by far predominate as the crystal structure forming motif. These chains are interconnected with cations by short (2.60 Å) O  $\cdots$  H-N hydrogen bonds, which are the shortest cation-anion Hbonds found in the family of relative compounds of piperazine and its N-methyl derivatives with selenium oxyacids (6, 12). The presence of hydrogen selenite anions in the crystal structure is also confirmed by a corresponding increase of the Se–O(H) bond length (1.769 Å) compared to the Se–O bond lengths (1.654 and 1.664 Å). Slight differences in the Se–O bond lengths can be correlated very well with the different participation of O2 and O3 atoms in the hydrogen bonds of O····H–O and O····H–N types (see Table 3).

# Analysis of the Vibrational Spectra

The number of normal modes of the crystals was determined by nuclear site group analysis (13). Standard correlation methods (14) were used for more detailed study of the

 TABLE 7

 FTIR Spectra of N,O-deuterated Me,pipz(DSeO<sub>3</sub>),

| Assignment                                       | (cm <sup>-1</sup> )                       | Assignment                                                                                                           | (cm <sup>-1</sup> )                  |
|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| vCH <sub>3</sub> , vCH <sub>2</sub>              | 3021m<br>2998m                            | $\delta$ С-N-H, $\delta$ N-С-H, $\delta$ С-С-H                                                                       | 1272m<br>1215m                       |
|                                                  | 2981m<br>2960m                            | $v$ C–N, $\delta$ C–C–H, $\delta$ N–D <sup>+</sup>                                                                   | 1150m<br>1143m                       |
| ?                                                | 2893w<br>2801w<br>2726w                   | $\delta$ N-C-H, $\delta$ C-C-H, $\nu$ C-N<br>$\delta$ N-C-H, $\delta$ C-C-H, $\delta$ Se-O-D                         | 1048m<br>997w<br>981m                |
| $vO-D \cdots O$                                  | 2070mb                                    |                                                                                                                      | 959w                                 |
| vN-D … O                                         | 1800m<br>1760m<br>1685m<br>1650m<br>1580m | $\delta Se-O-D$ $v_s Se-O (v_2 DSeO_3^-)$ $v_s Se-O (v_2 DSeO_3^-), vC-N$ $\gamma O-DO$ $v_{as} Se-O (v_5 DSeO_3^-)$ | 927m<br>835s<br>822s<br>722w<br>796s |
| $\delta_{\rm as} {\rm CH}_3,  \delta {\rm CH}_2$ | 1470m<br>1459m<br>1452m                   | $v$ Se–OD ( $v_1$ DSeO $_3^-$ )                                                                                      | 769s<br>624s<br>601m                 |
| $\delta_{\rm s} {\rm CH}_3$ , twiCH <sub>2</sub> | 1415m<br>1373m<br>1311w                   | $\delta O$ -Se-O ( $v_4$ DSeO $_3^-$ )                                                                               | 445m<br>416s                         |

expected vibrational features of hydrogen selenite groups. The results obtained are presented in Tables 4 and 5. Orthorhombic Me<sub>2</sub>pipz(HSeO<sub>3</sub>)<sub>2</sub> crystals belong in the *Pbcn*  $(D_{2h}^{14})$  space group with 17 atoms per asymmetric unit (Z = 8). All the atoms occupy eightfold positions  $d(C_1)$ . Two types of species present in the unit cell, N,N'-dimethylpiperazinium(2 +) cation and HSeO<sub>3</sub><sup>-</sup> anion, occupying fourfold positions  $a(C_i)$  and eightfold positions  $d(C_1)$ , respectively, were considered in more detailed calculations of the internal and external modes. However, the expected level of factor group splitting has not been observed even in low-temperature IR spectra. This fact could be explained by small interion interaction in the unit cell and also in terms of the fact that all the measurements were carried out on polycrystalline samples.

#### Vibrational Spectra

The vibrational spectra of  $Me_2pipz(HSeO_3)_2$  are depicted in Fig. 3, and the wavenumbers of the maxima are given in Tables 6 and 7. The assignment of vibrational bands is based on previous spectroscopic study of N,N'-dimethylpiperazine (15–17) and is also consistent with the results obtained for the similar compound with selenic acid (12). The IR spectra of N,O-deuterated compound were measured to confirm this interpretation.

The observed positions of broad medium-intensity bands of O-H and N-H stretching vibrations correspond well (according to (18, 19)) to hydrogen bonds lengths found in the crystal structure (2.62 and 2.60 Å of O–H···O and N–H···O, respectively). Corresponding shifts of all the bands discussed occur in the spectra of the deuterated compound. The weak bands in the IR spectrum in the region 1090–1020 cm<sup>-1</sup> which are sensitive to deuteration can be assigned to out-of-plane O–H···O and N–H···O bending vibrations.

The sharp bands in the  $3020-2950 \text{ cm}^{-1}$  region are characteristic for the stretching vibrations of the CH<sub>2</sub> and CH<sub>3</sub> groups. Manifestations of deformation vibrations of these groups are localized in the 1470–1370 cm<sup>-1</sup> region.

The existence of N,N'-dimethylpiperazinium(2 +) cations in the crystal structue is also reflected in the bands of the  $\delta$ NH<sup>+</sup> deformation vibrations in the infrared spectrum of 1550–1490 cm<sup>-1</sup>. Their more complex structure (especially in the low-temperature spectrum) is apparently caused by interaction with overtones or combination modes. The expected shift of these bands to lower wavenumbers occurs in the spectrum of the deuterated analogue.

Multiple bands of the deformation vibrations of the dimethylpiperazine skeleton can be observed below cca.  $1360 \text{ cm}^{-1}$  in the both IR and Raman spectra.

The clear indications of the presence of HSeO<sub>3</sub><sup>-</sup> anion in the crystal structure are, beside the Se–O valence vibrations position, broader bands of  $\delta$ Se–O–H vibrations at 1290–1275 cm<sup>-1</sup>. These bands, which are complicated by overlapping with the mixed vibration  $\delta$ CNH,  $\delta$ NCH,  $\delta$ CCH, are sensitive to deuteration, as expected.

Manifestations of external modes were recorded in the Raman and FAR IR spectra in the region below  $150 \text{ cm}^{-1}$ .

# Thermal Behavior

 $Me_2pipz(HSeO_3)_2$  is stable in the air up to 368 K, where it start to lose water of composition. This process is complete at ca. 403 K, where further decomposition begins.

Compounds were further studied by the DSC method in the temperature interval 95–365 K. No thermal effect was observed in the entire interval.

The FTIR spectra (in mid-infrared region) were recorded in the temperature interval from 298 to 90 K. No changes that would indicate the occurrence of structural phase transition were observed during decrease in the temperature of the sample. The minor differences found in the lowtemperature spectrum (i.e., narrowing and partial separation of the vibrational bands) are a result of the temperature effect.

As the space group of  $Me_2pipz(HSeO_3)_2$  is centrosymmetric (*Pbcn*) and any phase transition to a polar phase was not observed, the existence of significant dielectric properties (specifically ferroelectric) can be completely excluded. Analogously, the absence of any phase transitions at elevated temperature excludes the formation of phases with contingent proton conductivity.

#### ACKNOWLEDGMENTS

This study was carried out with the financial assistance of the Grant Agency of the Czech Republic, Grant 203/98/1198, and the Grant Agency of Charles University of Prague, Grant 13/1998/B CH, and is a part of the long-time Research Plan of the Faculty of Science "Structure, Dynamics and Function of Molecular and Supramolecular Assemblies" (MSM11310001).

# REFERENCES

- 1. W. Krumbe and S. Haussuhl, Z. Kristallogr. 179, 132 (1987).
- J. A. Paixão, A. Matos Beja, M. Ramos Silva, and M. Martín-Gil, Acta Crystallogr. Sect. C, Cryst. Struct. Commun. 53(8), 1113 (1997).
- 3. I. Němec, I. Císařová, and Z. Mička, J. Solid State Chem. 140, 71 (1998).
- E. de Matos Gomes, A. Matos Beja, J. A. Paixão, L. Alte de Veiga, M. Ramos Silva, J. Martín-Gil, and F. J. Martín-Gil, Z. Kristallogr. 210, 929 (1995).
- J. A. Paixão, A. Matos Beja, M. Ramos Silva, and M. Martín-Gil, Z. Krystallogr. - New Cryst. Struct. 212(1), 51 (1997).
- D. Havlíček, V. Chudoba, I. Němec, I. Císařová, and Z. Mička, J. Mol. Struct., in print.

- M. Zh. Ganitskij and V. I. Zelinokrajte, *Zh. Neorg. Chim.* 2, 1341 (1957).
- A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, and G. Polidori, J. Appl. Cryst. 27, 435 (1994)
- 9. G. M. Sheldrick, "SHELXL-97." University of Göttingen, 1997.
- P. Ondruš, "ZDS 5.14 Software for Analysis of X-Ray Powder Diffraction Data," 1992.
- 11. A. L. Spek, Acta Crystallogr. Sect. A 46, C-34 (1990).
- D. Havlíček, J. Plocek, I. Němec, R. Gyepes, and Z. Mička, J. Solid State Chem. 150(2), 305 (2000).
- D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, *J. Raman Spectrosc.* 10, 253 (1981).
- 14. W. G. Fateley, N. T. McDevit, and F. F. Bentley, *Appl. Spectrosc.* **25**, 155 (1971).
- N. N. Rubanyuk, S. M. Kim, Kh. Kh. Muldagaliev, and O. V. Agashkin, *Izv. Akad. Nauk. Kaz. SSR, Ser. Khim.* 5, 38 (1986).
- S. M. Kim, Kh. Kh. Muldagaliev, and O. V. Agashkin, Izv. Akad. Nauk. Kaz. SSR, Ser. Khim. 4, 14 (1989).
- 17. K. Fukushima, Bull. Chem. Soc. Jpn. 52(10), 2871 (1979).
- 18. A. Novak, Struct. Bond. 18, 177 (1974).
- 19. A. Lautie, F. Froment, and A. Novak, Spectrosc. Lett. 9(5), 289 (1976).